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consistent with the assigned structure; the observed chemical 
shifts and coupling constants were also in agreement with the 
NMR data reported by Tierney et al.13 following completion 
of these studies. The Hi signal appeared at low field consistent 
with its assigned bay region location. The H2 proton was found 
as a doublet of doublets at 5 6.13 coupled to Hi and H3 (J],2 
= 9.5, /2,3 — 2.2 Hz). The two carbinol H3 and H4 peaks ov
erlapped at 5 4.60 and 4.69, respectively. The relatively large 
value of /3,4 (J2,3 = 2.3, /3,4 = 11.5 Hz) confirms the trans 
stereochemical relationship of the hydroxyl groups and indi
cates that this dihydrodiol exists in solution predominantly in 
the trans-diequatorial conformation;28 much smaller coupling 
constants are expected for the cis isomer or for the trans-diaxial 
conformation.7d'28 

Investigation of the carcinogenic activity of 2 has revealed 
it to be more potent than DMBA and the most carcinogenic 
hydrocarbon metabolite tested to date.29 In comparison with 
the 5,6- and 8,9-dihydrodiols of DMBA, 2 (100 nmol) was 
found to induce tumors in 29/29 surviving mice (22.8 papil
lomas/mouse), while the other two dihydrodiols were essen
tially inactive. At lower dosage (10 nmol) 2 still induced tumors 
in 100% of mice (15.2 papillomas/mouse), whereas DMBA 
gave 85% tumor induction (4.8 papillomas/mouse). This is 
strong evidence for the intermediacy of 2 as a proximate car
cinogenic metabolite and la (and/or lb) as the ultimate car
cinogenic form of DMBA. 

The generality of the synthetic method depicted in Scheme 
1 is supported by studies in progress aimed at extension of the 
method to the analogous dihydrodiols of other polycyclic ar-
enes. rran.y-3,4-Dihydroxy-3,4-dihydro-7-methyl-BA, impli
cated as the proximate carcinogenic form of 7-methyl-BA,30 

has been synthesized successfully in our laboratory via a related 
synthetic sequence starting with 7-methyl-BA and eliminating 
the steps 6 —• 7 —• 8 involved with introduction of the methyl 
groups. Full details of this and other related syntheses will be 
reported in due course. 

Acknowledgment. This research was supported by Grants 
CA 11968 and CA 14599 from the National Cancer Institute, 
DHEW. We also thank Dr. Peter P. Fu for useful discussions 
and valuable assistance in interpretation of the NMR data. 

Note Added in Proof. Since submission of this manuscript 
2 has been characterized as a metabolite of DMBA by S. K. 
Yang, M. W. Chou, and P. P. Roller, J. Am. Chem. Soc, 79, 
237 (1979); NMR data reported therein are in good agreement 
with those observed for authentic 2 obtained through synthe-
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Stereochemistry of Pantoate Biosynthesis from 
2-Ketoisovalerate 

Sir: 

The biosynthesis of D-pantoate 3 constitutes the first stage 
in the formation of pantothenate, which is ultimately utilized 
in the biosynthesis of the acyl group carriers, coenzyme A and 
acyl carrier protein.1 The first step in pantoate biosynthesis 
is the reaction of 2-ketoisovalerate 1 with yV5,iV10-methyl-
enetetrahydrofolate to yield 2-ketopantoate, 2. The enzyme, 
ketopantoate hydroxymethyltransferase (5,10-methylenetet-
rahydrofolate:a-ketoisovalerate hydroxymethyltransferase), 
was recently isolated from E. coli and characterized by Snell 
and co-workers.2 Subsequently, 2-ketopantoate is reduced by 
2-ketopantoate reductase3 to D-pantoate 3.1 now present ev-
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idence which demonstrates that the formation of 2-ketopan-
toate from 2-ketoisovalerate proceeds stereospecifically with 
inversion of the configuration at C-3 of 2-ketoisovalerate. 

Freshly grown cells of a valine-isoleucine auxotroph of E. 
coli (ATCC 23783) were incubated with [4-13C]-
(2^S,,35')valine4 (4, 20 mg, 0.17 mmol, 90 atom% 13C) in a 
nitrogen-free medium containing /3-alanine.5"9 After the ter
mination of the incubation, calcium pantothenate (20 mg, 
0.042 mmol) was added, and, following hydrolysis (dilute 
H2SO4), pantolactone 5 (9 mg) was isolated. The 13C NMR 
(benzene-^ solution) of the biosynthesized pantolactone 5 
showed a ca. fourfold enhancement of the downfield methyl 
signal (o 22.49). In contrast, the intensities of the upfield 
methyl signal (5 18.78) and of other signals were unchanged. 
It is reasonable to assign the downfield methyl signal of pan
tolactone at 8 22.49 at the methyl group cis to the C-2 hydroxyl 
group.10 Since C-2 of pantolactone has the R configuration,1' 
it follows that the biosynthetic product was labeled in the ren 

methyl group, as shown in 5. Hence the configuration at C-3 
of chirally labeled 2-ketoisovalerate, derived in vivo from chiral 
valine 4, was inverted in the course of ketopantoate forma
tion. 

It is of some interest to note that no randomization of the 13C 
labeling was observed in this process. This result contrasts with 
our earlier studies on the stereochemistry of the catabolism of 
chirally labeled valines in rat liver preparations. In rat livers, 
complete randomization of the labeling occurred in the course 
of conversion of chiral valines to isobutyrate,13 presumably via 
enolization of 2-ketoisovalerate.14 

It is also of interest to note that the observed stereochemistry 
of 2-ketopantoate biosynthesis contrasts with the stereo
chemistry of the serine hydroxymethyltransferase reaction, 
in which glycine and A'5,Ano-methylenetetrahydrofolate react 
to give L-serine and tetrahydrofolate with retention of con
figuration at the a carbon of the glycine unit.13 
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Vibrational Spectroscopy of the Electronically 
Excited State: Pulse Radiolysis/Time-Resolved 
Resonance Raman Study of Triplet |8-Carotene 

Sir: 

One of the foremost problems in photophysics, photo
chemistry, and photobiology is adequate characterization of 
the structures of molecules in electronically excited states. This 
problem is particularly acute in solution, owing to short ex
cited-state lifetimes and the inapplicability or lack of structural 
specificity of conventional (gas phase) excited-state probes. 
Recently, several workers have developed time-resolved res
onance Raman (TR3) techniques,N8 which meet the criteria 
of speed, sensitivity, and structural specificity9 to be attractive 
probes for excited states. Yet with one exception10 TR3 has 
only been applied to ground-state transients. We report a 
resonance Raman study of the lowest triplet excited state of 
the photosynthetic accessory pigment, all-trans-[1-ca.roitnz 
(see Figure 1). 

Ground-state /3-carotene gives a remarkably intense reso
nance Raman spectrum," with bands which have been as
signed to the in-phase, double-bond C=C stretch (1521 cm"' 
in benzene), the C—C in-phase single-bond stretch (1157 
cm-1) and the C—H in-plane bend (1003 cm-1).11 These 
assignments are, however, recognized to be uncertain in the 
single-bond region.1 u 2 The triplet state of /3-carotene has been 
studied spectrophotometrically, using pulse radiolysis13 as well 
as flash photolysis of chloroplasts. 14In our experiment, a 10-4 

M solution of /3-carotene in benzene, containing 10-2 M 
naphthalene to transfer benzene triplets to /3-carotene,16 was 
irradiated by 4-MeV electron beam pulses of 800-ns duration. 
Transient absorption spectra (T-T Xmax 515 nm compared 
with ground-state Xmax of 460 nm) showed that the maximum 
concentration of/3-carotene triplet states occurred at — 1 ^s 
after the end of this radiotysis pulse (see Figure 2). The laser 
interrogation pulse (7-ns, 531.8-nm frequency-doubled Nd: 
YAG) was synchronized with the electron beam to strike the 
sample when the triplet concentration was near this maximum. 
The Raman photons were detected using a vidicon spectro-
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